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ABSTRACT 

Cluster formation is simulated numerically with discrete velocity Boltzmann model 

in two space dimensions. The model exhibits cluster coagulation, fragmentation, and 

transport. It evolves on two different scales obtained from an elastic and inelastic 

collision Knudsen numbers e and p respectively. For flow impinging on a wall with 

specularly reflective boundary condition these scales appear both analytically and nu- 

merically. 
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§1    Introduction 

In recent paper Slemrod, Grinfeld, Qi and Stewart [8] have given a model and one dimensional 

numerical simulation for a discrete velocity gas exhibiting coagulation and fragmentation. 

For example such a model might illustrate same of the grosser features of nucleating droplets 

that make up fog or an aerosol. 

The model is based on the rules of discrete velocity kinetic theory and many of the ideas 

using in developing the model are to be found in an earlier model of Monaco and Pandolfi 

Bianchi [2, 3]. The new feature of the model of [8] is that it allows clusters of particles with 

unlimited cluster size while the model [2] did not. 

The model of [S] contains two length scales based on an elastic Knudsen number e and 

inelastic Knudsen number /.i. Since inelastic collision processes proceed much slower than 

elastic ones we expect 0 < s « //. This in turn implies at least for steady flow that we 

should see different regimes of gas flow in a neighborhood of a boundary. 

In this paper we consider this issue analytically and numerically. Indeed in a sequence of 

photos of computer generated data we have able to see the boundary layers rather sharply 

completely consistent with the analytical analysis. 

§2    The discrete velocity coagulation-fragmentation model 

ume We consider a discrete velocity gas of identical particles each of mass m contained in vol 

VCR3. A point in V is identified with its Euclidean coordinates (x,y,z). The particles 

are grouped into clusters possessing 1,2,..., M particles where the cluster of size M is the 

largest cluster that can be crammed into V.  The clusters move in V with fixed momenta 



Px = m(c,0,0), £2 = m(-c,0,0), £3 = m(0,c,0), £4 = m(0,-c,0), £5 = m(0,0,c), 

Pg = m(0,0,-c), £o = m(0,0,0).   A cluster made up of a-particles will be called an 

p 
a-cluster. It is clear that an a-cluster with momentum P., has velocity v°- = ^. 

As the clusters move in V they collide in a binary fashion. Both elastic and inelastic 

collisions are allowed. In terms of the momenta £, the elastic collisions will be represented by 

list £i + P2 = £3 +£4 = £5 +-£e while the inelastic collisions are denned by P_i +£2 = £0, 

£3 + £4 = £0, £s + £e = £0, £,: + £0 = £, (* = 1. -16)- Notice elastic collisions conserve 

mass, momentum, and energy; inelastic collisions conserve mass and momentum but not 

energy. We denote by n?{x,y,z,t) the number density of «-clusters with momentum £, at 

a point {x,y,z) € V at time t > 0, i.e. the number of clusters in this class per unit volume. 

A collision of an a-cluster with momentum P; and a ^-cluster with momentum £,- which 

yields a ^-cluster with momentum £;. and a 7-cluster with momentum £, will be represented 

by «,nf) -* (nl,n]). This notation allows us to write the allowable elastic collisions as 

follows. 

1. Mechanical collisions: (n°,n%) -♦ K,nf) (pro&.*),   K,<) {prob.±),  (nfX) (proft.J) 

with similar statements for (n^n"),  (n°,n%). 

2. Exchange collisions:  (a) "head-on" collisions:  (n?,nj) -» «,«2) {prob.\),   (nf.nf) 

(pro6.i), (n£,nj) (proft.J), (nj,<) (prob.\), (n"5,n
ß

6) (prob.±), (n?,<) (proft.i) 

with similar statements for (n°,nj) and'(n£,nj?). (b) "angle" collisions: (nf,nf) -> 

(nf ,nJ)(pro6.i),   (n?,n°) (pro6.i) with similar statements for {n",^) and (n%,nß
5). 

We only allow inelastic collisions of the Becker-Döring type [4, 5, 7], i.e. where an 

a-cluster may gain or lose a 1-cluster in coagulation or fragmentation respectively.   The 



coagulation of a 1-cluster with momentum P_j to form anal 1-cluster with momentum 

JPk is represented as (n},n?) -»• (n£+1) while the fragmentation of an a + 1-cluster with 

momentum P^ into a 1-cluster with momentum P,- and an a-cluster with momentum P_ 

will be denoted by (n£+1) -> (n},n°).   With this notation the allowable Becker-Döring 

inelastic collisions are as follows. 

1. "Head on" coagulation:   (n},^"1),   K"1,^),    «n?"1),   K"1,^),   (nln^), 

K^X)-«). 

2. "Moving cluster coagulates with rest cluster":   (nj,^-1),    (n°-1,n£)  -►  n?,   j  = 

1,2, ..,6. 

3. Reversal of 1 (fragmentation): «) -> (nlX^Xprokg), K"1,^) (pro&.J), (n^J-1) 

(profcl),    K-1,«!,) (pro6.I),    (n^r1) (pro6.|),    (n?"1,»»») (pro6.J)    if a > 2; 

(«2)-(n},ni)(pro6.1),  K,n>),  (pro6.i),  (nj.nj) (pro6.J). 

4. Reversal of 2 (fragmentation):   (n?) -» (njX-1) (pro6.±), «nf"1) (profr.J), j = 

l,2,...,6ifa>2;  (n?) -> (nj, n»),i = 1,2,-..., 6. 

The rate equations governing the motion of clusters are given by the transport equations 

at     a ax l      i 

Ön£_cÖn|    _ 
dt     ctdx    ~  *2+l2 ' 

#<      c dn? 

■w-äw = E<+1'- liaiM <21» 

dt       a dz 



dn%      cdn% 

Ot       a dz 
dn% _ 

The calculation of Ef has been given in [2, 3] according to the rules of discrete velocity 

kinetic theory, i.e. these terms are proportional to collisional cross sectional areas; the 

relative velocity of the particles before collision; the probability of each admissible collision; 

both number densities of the colliding particles. Clearly Eg = 0,Q = 1,...,M. We record 

the rest of Ef and the inelastic collision terms If in Appendix. 

It is a straightforward exercise to show 

Ef + E« + E^ + E° + Ea
b + E° = 0 , a = 1,...,M , 

M M M 

E E? - ^ = £ Et -Et = Z Et -Et = 0, 
a=l o=l o=l 

M 

£ a (It + If + It + IS + It + It + Ie ) = 0 , 
o=l 

M M M 

EA°- J2=EJ3- %= ££- is =0 • 
o=l Or=l a=l 

Next define the quantity: 

+(1 " ^Kia^nt + aZna
2 + a3^ + <°< + <£>? + <£>e) 

+(1 - kiXalJnfn» + aj^ri} + a*?X»4) 

+ aa,ln2 nl + aaln4nl + aa,5ln6n5 

-Aa+in^1 - Ci»6+1 for l<a<M-l, 

JM   =   0. 



It then follows that 

IS + Jf + /£ + It + It + J6 =Ja-i-J«,l<<*<M 

Let us define 

na
} = n°1l 

where K is a typical value of the density £j=o£a=i anj> x = xL, y = yL, z = zL, ct = tL 

where L is a typical macroscopic length. Hence n°, x, y, 2 are dimensionless quantities. 

Then for example in equation (2.1) we see 

Hence we see 

di      a dx 1   *   *'     cft 

where we define £f as £f with c = 1, n* replaced by n?, and rx = 1 in the definition of aQp. 

Next set e = l/Lr^Tl which is the dimensionless elastic Knudsen number. 

If possesses both coagulation and fragmentation coefficients. It is natural to assume 

the coagulation coefficients aj*ß scale in a similar way to the elastic collision coefficients, i.e. 

they are proportional to cr\. By consistency we then assume the fragmentation coefficients 

ya+x are proportional to crjTl. 

Thus setting 

««,1    =    «,i«ci- 



where \i is the dimensionless inelastic Knudsen number, and Jf is Jf with n] replaced by 

"?i fla'lii *Jr+i replaced by the above definitions, we see 

dnQ      Idn"      E?  , /f 

dt      a dx        e       n 

Finally drop the over bars and we have derived system 

dna 

dt 
+ 

ldna
x 

a dx 

On* \dn» 

dt a dx 

dt 
+ 

1 dnQ 

a dy 
dn° I dn°A 

dt a dy 

dt 
+ 

ldn% 

a dz 
dnQ

6 1 dn% 
dt a dz 

dn"Q 

dt 

£          fi 
(«) 

E?     I? — + — , 
£          p 

(*) 

£          fl 
(c) 

pa         ja 
_i. J. _1 

£           fl 
(d) 1 < a < M 

£           fl 
(e) 

pa         fa 
ZU. A. _£. 

£          fi 
(/) 

ja 

(</) 

(2.2) 

/* 

We note that since in our model the total number of particles is always conserved, a cube 

of volume L3 will have 11 = M0/L
3 where MQ is the number of particles at * = 0. Of course 

Mo must be less than or equal to M. Hence we have £ = L2/r2MQ. In the Boltzmann limit 

[1] for rarefied gases we take M0 -» oo, (^) -> 0, vol(V) -> oo with (^) M0 finite. This 

motivates our study of the case of M = oo, £ finite. However in the Boltzmann limit for 

dense gases we take M0 -► oo,   (^-) -> 0,  with (^-) M0 finite i.e. since 

C     {n/LfMo ' 

we consider £ —► 0,  the fluid dynamical limit. 



Next record in addition the equations for transport of a-clusters 

UN°)     +     £(rU°)      +     fy(NQva) 
+   £{Nawa)   =   ^jf^S    2<a<M 

where 

j=0 

Nau"  =  -«-<), 
a 

a 

#*„,«   =   ±«-n£); 
a 

the equation for conservation of mass 

where 

M 

Q=l 

M M 
pu   =    ^artt^^K-n-), 

Ct=l Of=l 

M M 
pv   =   £oJV<V> = ]>>£-<), 

(2.3) 

(2.4) 

^ + ^) + |(H + ^) = 0, (2.5) 



and the equation for conservation of linear momentum 

!« + !!>?+<)   =   0, (2.6) 

If we define the macroscopic symmetric tensor IT by 

a 

nyy = -V + E^K + O, 

Q 

nry = -puv, ux: = -puw, UyZ = -pv IÜ 

then the conservation of linear momentum may be expressed in the familiar form 

|M + |(P™> + |(/^^ =   0,   (2.7) 

In this paper, we consider only the two space dimensions by setting na
3{x,y,z,t) = 

n](x,y,t), making the symmetry assumption nf(x,y,t) = n%(x,y,t) and forcing w = 0. As 

noted above in the Boltzmann limit we take M = oo. 

§3     A simple scaling analysis 

Consider the transport equation (2.2) in the Boltzmann limit M = oo.  We wish to study 

the behavior in the neighborhood of wall x = 0. First we rescale x, t and set x = f, t = j 



where T is a typical dimensionless time. Substitution of this scaling into (2.2a) yields for 

example 

ldnf       1 dn° = E?  |  /f 
T di      ea dx       e       ft 

Hence for small time when T = £ we find to leading order the system is governed by the 

elastic collision system 

di  + 
\dn% 
a dx 

On* \dn° 

di a dx 
dn% 
dt 

dn° 
di 

dn% 
di 

dn°0 

= El* («) 

= E% , (*) 

= £3   ■> (c) 

= Ea
A, (d) 

= Et («0 

— 0, (/) 

l<a<oo (3.1) 

dt 

as long as y is outside a layer of width £ from the y = 0 wall. 

On the other hand for larger times when j « 1 we recover the equations 

ld"°    =   Et,    (a) 

=   £?,    M (3-2) 

a dx 
ldn° 
a dx 
fi dn% 

Tdi    =   *'    (C) 

0 = E%   =   Ea
A     =    Et- (3.3) 

For intermediate time T = /.i, (3.2c) yields the dynamic equation 

dn% 
<■& 

di = it (r = /i) (3-4) 



dt a dx 

dn% 1 dnf 
dt a dx 

dt 
dn* 

1 dn% 

a ay 
ldn° 

dt 
dnf 

a dy 

dt 
dn° 

while for large time (3.2c) T » ft yields the constraint 

0 = /oa    (T»fi). (3.5) 

In the neighborhood of the vertex x = 0, y = 0 we rescale y in a similar manner y = *, 

T = e yielding the system 

^ + IM   =   E*%    {a) 

=   E°2,    (b) 

=   E° ,    (c)        1 < Q < oo (3.6) 

=   £?,     (d) 

=   E°,    (e) 

* =   ° '     (/) 

Again for larger times j; « 1 we recover the equations 

1 **    =   Et ,     (a) 

=   £?,     (6) 

=   £3 ,    (c)        1 < a < oo (3.7) 

a ay 

0   =   £«,    (e) 

^dU0 TO (f\ 

T di   ~   °' U) 

Again for T = /* and T >> // we obtain (3.4), (3.5) respectively from (3.7f). 

Notice of course for y independent motion (3.7) reduces to (3.2), (3.3).  Thus for large 

time T » fi, the motion in an ^-neighborhood of the wall x = 0 for one dimensional flow 

10 

a dx 
1 dna

2 

a dx 
1 dn% 
a dy 
ldna

4 



and in a square with sides of length e near x = 0, y = 0 for two dimensional flow is governed 

by steady elastic collisions combined with the constraint 1% = 0. 

Now we must do the analysis on the larger fj, scale. The crucial step is to rewrite the 

cluster balance laws (2.3), (2.4) in the scaled variables i = j, x* = J, y* = J. In this 

notation (2.3), (2.4) become 

Tfi{N°H^{NQua) + W*{Nava) = ^-1"•7o,    2^a<°°'     (3-8) 
^IN

1
 + Sz(NW) + A(ArV)   =   -J.-E^- (3-9) 

T at Ox ay Q=1 

On the same time scale T = e the elastic terms dominate and we find from (2.2) the 

spatially homogeneous system 

-^i--Ea   =   0,    1 < ?'<6, 1 <a<oo (3.10) 
dt        } 

H   =   0,    l<a<oo. (3.11) 
at 

On the intermediate scale T - \i spatially inhomogeneities enter via (3.8), (3.9) and we 

obtain the equations 

^(Na) + ^-(N°ua) + ^-(Nava)   =   Ja-i-Jc,        2<Q<OO (3.12) 
dt ox" ay* 

*Ni+*{Niui) + J*{NW)   =   -J!-f;jtt, (3.13) 
d* dx-y dy* a=1 

combined with 

?< = JS (3.14) 

from (2.2g).    In addition we have the constraint that the solution evolve on an elastic 

Maxwellian 

&i = 0 ,    1 < j < 6, 1 < a < oo , (3.15) 

11 



from (2.2a-e). 

We recall from [S] that (3.15) implies 

K,^,n3
a,<,<) = (ecSe-Cl,ecSe-cM)C°,    a = l,--- • (3-16) 

For longer times T » fi (3.12), (3.13), (3.14) reduce to their time independent steady 

state versions obtained by setting time derivatives equal to zero. 

For motions where x » /z, y » p, t » n the fluid dynamic limit becomes the 

dominant system: 

dt     ox ay 

jt^iU[n'+<) = °- (X17) 

where n* evolve along the manifold of elastic-inelastic Maxwellians (again see [8]) 

Ej =Ij=Q,    0 < j < 6 , 1 < a < oo , 

given by 

{nZ,n°,nZ,n$,n°,na
s)    =   (1, ec\ e~Cl,ec\ e~c\ \)Qa{n\)a , 

=   2"-'aa-1"\ai ,    a>2 (3.18) 
ba • •• o2 

Qi  =  1, 

Cl, c2, nj are functions of {x,y,t). In this case (3.17) yields a system of three conservation 

laws in the dependent variables Cl(x,y,t), c2(x,y,t), nl
0{x,y,t). The system is meaningful 

in fluid dynamic limit e -» 0 for finite values of the density p, i.e. when 0 < nj < z3 and z, 

12 



is the radius of convergence for the power series 

oo 

0=1 

Here p3 = £~=i aQaz° is the saturation density. 

Thus we conclude: 

1. In an e-layer near the wall the elastic Boltzmann like regime dominates given the 

(3.1)-(3.7). 

2. In a wider layer of width /z the cluster transport is taking place. This layer interpolates 

between the macroscopic fluid equations (3.17) and the microscopic elastic collision 

Boltzmann like dynamics (3.1)-(3.7). This wider /i layer is governed by equations 

(3.8)-(3.16). 

There is one additional scaling that is appealing to make in the transition layer of width 

H, T = n when (3.12)-(3.16) are valid. Specifically we follow the discussion of Zel'dovich and 

Raizer [10, VI, Section IS] and treat a as a continuous variable, 1 < a < 00. This yields the 

rule for evolution along elastic Maxwellians as 

(ni (x, y, a, *), n2(x, y, a, t), n3{x, y, a, t), n4(x, y, a, t), n5)(x, y, a, t) 

= (eCl,e-Cl,ec',e-C2,l)C(x,y,a,i),    1 < a < 00 , (3.19) 

where Ci, c2 are functions of (x,y,t). Then we find 

6 

N(x,y,a,t)   =   Enj(a:,y,a,0 
i=o 

=   n0(x,y,a,t) 

+C(x, y, a, 0(2 cosh cx + 2 cosh c2 + 2) ,        (3.20) 

13 



N{x,y,a,t)u(x,y,a,t)   =   -(sinh(ci(z,?/,*))£(*,2/^0 , (3-21) 

9 
N{x,y,a,t)v(x,y,a,t)   =   -(s'mh(c2(x,y, t))C{x,y,a,t) , (3.22) 

J(x,y,a,t)   =   a(a)n0{x,y,a,t)C(x,y,a,t){2coshcl+2coshc2 + 2) 

+a(a)n0{x,y,l,t)C{x,y,a,t)(2coshcl+2coshc2 + 2) 

+3a(a)C{x,y,l,t)C{x,y,a,t) 

+3a(a)C(x1y,l,t)C{xty,a,t) (3-23) 

-6(a)C(;r,7/,a,0(2coshci + 2coshc2 + 2) 

-(2 cosh d + 2coshc2 + 2) —(i(a)C(x, y,a. 0) , 

70(.T,7/,a,0    =    3/;(a)no(.T,y,cv,0 + 3a(a)C(.T,y,l,0C(x,y,Q,0 

-3C(x, y, 1,0^(a(a)C(x, </, a, 0) 

+3a(a)C(a;,j/1l,0C(a;,y,a,0 

-3C(;r, y, 1, 0^(a(a)C(ar, J/, a, t)) 

-a(a)C(x,y,l,t)C{x,y,a,t)(2coshcl+2coshc2 + 2) 

--6(a)C(ar, y, a, 0(2 cosh c, + 2 cosh c2 + 2) (3.24) 

i /) 

— (2 cosh C! + 2coshc2 + 2) —(6(a)C(.-r,y,a,0) , a >> 1 , 
2 öa 

/o(x,y,l,0   =    - f°° a(ß)n0(x,y,l,t)C(x,y,ß,t){2coshc1+2coshc2 + 2) 

-]: W)C{x, y, ß, t)(2 coshcx+2 cosh c2 +2) 

+^-[b(ß)C(x,yJ,t){2coshc1+2coshc2 + 2)]\dß. 

Here we have conveniently though not rigorously regarded 1 as a small parameter when 

14 



a » 1 and used the approximation 

f{a + l)*tf(a) + f(a). 

If we combine (3.23) (3.24) with the continuous version of (3.12) we find for large a that the 

governing equations become the conservation laws 

t(N) + 4-(Nu) + 4-(Nv) + ^   =   0 (3.25) 
dt dx'K     '     dy*x     'da 

—n0(x,y,a,t)   =   I0(x,y,a,t) (3.26) 
at 

where N, Nu, Nv, J, I0 are given by (3.20)-(3.24). This provides a system of equations for 

the variables n^x',!/", a. i), C"(x", y", a, i), c*(:i:*, y~, i), <%(xm,y", t) obtained from n0, C, cl7 

c-2 by the indicated change of variables. When combined with the equations of conservation of 

momentum (2.6a,b) written along (3.19) we have four equations in four unknowns depending 

on the four independent variables x', y*, a, i. Unfortunately (3.25), (3.26) will possess 

the nonlocal "boundary" terms C{x,y, l,t) n0(x,y,l,t) which must be obtained from the 

continuous versions of (3.13), (3.14): 

^W(x,y,U)   +   — (N(x,y,l,t)u(x,y,l,t)) + — (N(x,y, l,*M*,y, 1,0) 

J{x,y,a,t)da, (3.27) 

—.n0(x,y,l,t)   =   IQ(x,y,l,t). (3.28) 

A continuous approximation of (3.12) would envolve solving (2.5), (2.6) (subject to (3.19)), 

(3.25), (3.26) for a > 1 with boundary conditions (3.27), (3.28) and appropriate initial 

conditions for nj, C, c\, c*v 

15 



§4    Numerical simulations 

In this section, we present the numerical simulations of a gas impinging upon wall(s) in a 

two dimensional square box. We assume specularly reflecting boundary conditions. Using 

the discrete velocity model, we expect to observe the nucleation, that is the formation of 

larger clusters, on the boundary where the gas impinges. 

The numerical implementation of the model is straight forward except for the method 

used to solve the partial differential equations (2.2). For that we used the first order upwind 

scheme to discretize (2.2). Also we require the closure hypothesis JM = 0 to enforce mass 

conservation, M finite. The calculations are carried out at U-W Madison on an HP710 

provided by NSF under a SCREMS grant. The color pictures were created on an SGI 

machine. 

The kinetic coefficients in the inelastic collision process are computed with the formulas 

used by Penrose, Lebowitz, Marro, Kalos, and Tobochnik [6]: 

2aa = -(874 + 18S8a)1/3 ,    2 < a < oo , (4.1) 
6 

ba+1 = 2waaa , 2 < a , (4-2) 

Q« U ,     2-415 

wn = (4.3) 

For the case a = 1 

ws = 0.010526 . (4-4) 

Gl = 1(874+ 1888)1/3 (4-5) 
6 

and 

Qa 
wn = 

Qa+1 

16 

, a = 1,2. (4-6) 



b3 = 2w2a2 , b2 = wxai . (4.7) 

Qx = 1 and we choose Q2 = exp(2.599), Q3 = exp(5.708) from the equilibrium simulation of 

Stauffer, Coniglio, and Heerman [9] given in Table 1 of [6]. 

The initial data are given by the formulas 

«,<,n°,n°,<X)   =   (0,0,0,0,0), 2 <a<M (4.8) 

(n>;XX,n*,r4)    =   (1, ec', e"6', ec\ rMJ^nJ , (4.9) 

Therefore initially, we have only the 1-clusters in the system. 

Choosing nl = 1.0, cx = 2.0, c2 = 0.0, Knudsen numbers s = 15 and // = 30 and M = 8, 

we have a case that can be reduced to one dimensional model. The Fig. l(a)(b)(c)(d) are 

illustrated the density distribution of the gas at time steps 50, 150, 250 and 350 respectively. 

In all of gray scale photo pictures, the variations of gray scale from white to grey to black 

correspond to the density variations from zero density to lower density to highest density. 

The gas impinged upon one side wall and was drawn off from the opposite wall. The Fig. 

2(a)(b)(c)(d) shows the density distribution of total nucleated clusters, that is the all clusters 

except of the 1-clusters, for the corresponding steps as in the Fig. l(a)(b)(c)(d). The 

nucleation process are clearly visible and proportional to the density distribution of the gas 

at the side of impinged wall. 

The Fig. 3(a)(b)(c)(d) show the density distribution at steps 50, 150, 250 and 350 

respectively for the gas sending to a corner of the square box. Here nj = 1.0, cx = 2.0, 

c2 = 2.0. e = 20, n = 40 and M = 8. The Fig. 4(a)(b)(c)(d) show the corresponding 

nucleation density distributions. The Fig 3 and 4 are illustrated the similar phenomenon as 

in the Fig 1 and 2 except that in the Fig 3 and 4, the phenomenon is not reducible to one 
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dimensional model. Both computational visualizations show the formation of two layers, one 

nested within the other at the boundary. 

§5    Conclusion 

We have performed a numerical simulation for the discrete velocity kinetic model with co- 

agulation and fragmentation originally described in [8]. The computations illustrate the 

formation of a boundary layer containing the large clusters (denser vapor) which is con- 

tained within a thicker layer in which the rarefied vapor is being converted to the denser 

vapor. Of course the computations only reflect the two length scales built into the original 

model: e, p. In an e-neighborhood of the wall the elastic collisions dominate and coagula- 

tion and fragmentation ceases while on a larger ^-neighborhood and away from the wall it is 

the inelastic collisions with the flow evolving along the manifold of elastic Maxwellians which 

dominate. Since it is the inelastic collisions that cause the nucleation we observe nucleation 

occurring through the wider /x-layer. Outside the wider p layer the macroscopic conserva- 

tion laws of mass and momentum (isothermal, compressible Euler equations) are valid. This 

is meaningful in the infinite limit M -+ oo as long as 0 < p < p., pa the saturation density. 

In the p, e layers we have no such restriction and p can exceed p,. 

Acknowledgment. The authors would like to thank Professors Carl de Boor, David Grif- 

feath, and Mr. Scott Kersey for their assistance with the graphical visualization displays. 
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APPENDIX 

Formulas for elastic terms E°: 

Ei    =   Ö (n3n4 +%ne — 2nx n2) 
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2-n°4-n%4), 
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3   a 
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Here cra^, cRaß denote the collisional cross sectional area and magnitude of relative ve- 

locities in a (n?,nß
k) collision. An estimate of aaß is easily obtained by noting that it is 

proportional to (ra + rß)2, ronrß the radii of a- and ^-clusters respectively. Since the vol- 

ume of an a-cluster in |7rar3 the radius of a spherical a- cluster is na1/3 and hence aaß 

is proportional to r^a1'3 + ß1/3)2. To compute Raß we note that the velocity of an n] 

cluster is £ and an nf cluster is g. Hence Raß = (J + J) for "head on" collisions and 

#«,0 = (^2 + ^)1/2 for collisions at a right angle. 

Inelastic terms I? for 2 < a < M: 

+(1 - «aw)(-al>?n5 - «25»i"o + $6i+i"?+1 + \bUino+l) » 
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an° 
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Inelastic terms J? for a = 1: 
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M-l i h° 

II   =   - £ {4>lnße + a\y54 - (1 + 8ßl){\b\+ßn\^ + -fn^)} , 
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M-l i h° 
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+0»}+' + bl+0n\+ß + 6f+^r)} 

The a£jj and fr^+1 are positive kinetic rate coefficients for coagulation and fragmentation 

respectively. The a^ satisfy the principle of detailed balance a^ß = ap\a = aa'^. In general 

aa,ßi ^i+i should depend on the volume V but in the classical Becker-Döring approach we 

use here they are assumed independent of V. 
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